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1. Introduction 

In recent years COVID-19 pandemic has presented an unprecedented challenge to public health with 
impact and implications in all aspects of human life. The scientific community has focused on 
understanding the SARS-CoV-2 pathogenesis, developing and improving treatment, prevention, and 
diagnostic methods. In partnership with policymakers, researchers from various disciplines contribute to 
controlling the spread and overcoming the consequences of the pandemic. On the other hand, emerging 
technologies accelerate and optimize the technical and human resources in tackling the global health 
threat. Applying machine learning-based models to medical imaging problems can support, optimize, 
and automate the prognostication and diagnosis process. In the Artificial Intelligence (AI) field, 
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 The paper presents a brief analysis of publications utilizing the public 
SARS-CoV-2 dataset, consisting of patients’ computer tomography scans 
captured from Brazil hospitals and an experimental setup addressing the 
found data challenges. The analysis shows that all protocols, with one 
exception, suffer from data leakage arising from data organization where 
the patients and their images are not grouped. Each patient is represented 
with several scans. It can provide misleading results as data of the same 
individual may occur in both training and test sets. Furthermore, only one 
paper proposed ensemble learning utilizing as base models VGG-16, 
ResNet50, and Xception. Therefore, we proposed and experimented with 
the following strategy to mitigate the found risks of bias: data 
standardization and normalization to achieve proper contrast and 
resolution; k-means and group shuffle split to avoid data leakage; 
augmentation and ensemble transfer learning to deal with limited sample 
size and over-fitting. Compared with the earlier proposed ensemble 
approach, the current one stacks VGG-16, Densenet-201, and Inception 
v3, achieving higher accuracy (99.3 %), second in the related work, and 
most significantly, it applies augmentation and clustering analysis to avoid 
overestimation. In contrast, the paper also presented critical metrics in the 
medical domain: negative prediction value (99.55%), false positive rate 
(0.89%), false negative rate (0.42%), and false discovery rate (0.83%). The 
strategy has two main advantages: reducing data pitfalls and decreasing 
generalization error. It can serve as a baseline to increase the performance 
quality and mitigate the risk of bias in the field.  
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computer vision strategies for discovering patterns on CT imaging have been developed, particularly for 
SARS-CoV-2 infected patients [1], [2]. The most recent systematic literature reviews discuss the 
findings of the detection and classification of coronavirus images (X-ray and CT) using machine and 
deep learning techniques from various perspectives.  

The entire pipeline of AI-empowered medical imaging, analysis techniques, and applications in 
COVID-19 is covered in a methodological study [3], including two modalities demonstrating its 
effectiveness: X-ray and CT. Four main research directions are discussed: AI-empowered contactless 
imaging workflows, AI-aided image segmentation, AI-assisted differential diagnosis of COVID-19, and 
AI in follow-up studies. Furthermore, CT-based screening is grouped into classification tasks 
distinguishing COVID-19: other types, non-COVID-19, and determining the infection severity. 
According to the review, numerous current AI segmentation and diagnosis studies use small samples, 
leading to overfitting results. The data quality and quantity should be improved to make the results 
clinically useful. Although deep learning has emerged as the most effective strategy, imaging may have 
incomplete and inexact labels, making it complicated to train an accurate network. Labeling is costly 
and time-consuming, prompting researchers to look into self-supervised deep learning and deep transfer 
learning methods. It is critical for better COVID-19 screening and diagnosis to merge data from multiple 
sources such as imaging with clinical manifestations and laboratory examination results. 
Recommendations for treatment evaluation and follow-up are provided. Medical imaging, natural 
language processing, and ontology are examples of multidisciplinary integration that enhance the overall 
COVID-19 measurement. A preference for CT scans directory, recognition of deep transfer learning as 
an appropriate approach, and attention to the quality of small labeled data are review’s contributions to 
the current research.  

The appropriate criteria for the evaluation and the correct benchmark procedure of AI techniques, 
among the others, are at the focus of a systematic review [4], considering the COVID-19 medical images 
classification tasks (both for X-ray and CT): binary, multi-class, integrated multi-class and binary, and 
integrated hierarchical and multi-class. The review highlights the challenges of various evaluation 
criteria, where its type and number are different within each of the four identified tasks. The meaning 
and calculation of precision in binary classification differ from precision in multi-class types. Among the 
others, criteria trade-off and criteria importance is also challenging. The discussed study presents a three-
phase methodology for evaluating and benchmarking AI techniques used in all COVID-19 image 
classification tasks to address the described complexity. The significant steps in the first phase are 
identifying the dataset and required pre-processing, evaluation criteria, and proper classification 
techniques (importance of accuracy and loss function to avoid over-under-fitting issues). The decision 
matrix as an output refers to the intersection (in values) between each AI technique and identified 
evaluation criteria of each task. The second, namely the development phase, applies the integrated AHP 
(Analytic Hierarchy Process) [5] and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) 
[6] methods. The last phase utilizes objective (the mean ± standard deviation to validate the results) and 
subjective (models evaluated by experts) validation of the proposed solution. Information obtained 
directed the current experimental session to the binary classification task with corresponding evaluation 
metrics. 

A thorough review, Roberts et al. [7] emphasizes the common pitfalls and recommendations in using 
machine learning to detect and prognosticate COVID-19 from chest radiographs (CXR) and CT scans. 
In addition to the datasets considered, several diagnostic domains are presented: CXR, CT and 
traditional machine learning methods, CT and deep learning. The summary of data extracted includes 
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the type of task (diagnosis/prognosis or both), data used in the model (X-ray/ CT scans or both), 
predictors, development (training and validation) and test sample size, type of validation 
(internal/external/both), evaluation (performance of the model), public code (available or not). 
Participants, predictors, outcomes, and analysis are all used as domains to assess risks of bias (following 
the PROBAST - Prediction model Risk of Bias Assessment Tool [8]). According to Roberts et al.  [7] 
and Wynants et al.  [9], the identified models’ main weakness is their inability to be used in clinical 
settings due to methodological flaws and/or underlying biases. Many studies suffer from frequently 
encountered issues: insufficient data (not large enough or of poor quality, a high or unclear risk of bias, 
poor integration of multistream data, not representative of the target population, poor demographic 
statistics, including age and sex distribution), deficiencies in methodology and study design, poor 
reproducibility critical for deployment in clinical practice. Based on the analysis findings, the authors 
made a series of recommendations organized in domains: data, evaluation, replicability, authors, and 
reviewers. Wherever possible, the current research takes into account described pitfalls and advice. 

 Previous studies present a literature review of research in X-ray and CT imaging directories. Hassan 
et al.  [10] focus entirely on SARS-CoV-2 diagnostic methods on CT images,  categorizing the AI-
enabled models per computer vision tasks: classification, segmentation, and detection. Another main 
contribution is the curation of important information about the 29 most extensively used and essential 
chest CT datasets utilized for COVID-19 research organized in the following clusters: large and small 
datasets with supplemental AI-based models, datasets with no supplemental models, datasets with 
supporting clinical information and data augmentation–based datasets. Released details are utilized to 
identify relevant and quality data and define the main task in the current experimental session. Backing 
the critical information about the most widely used and essential COVID-19 chest CT datasets presented 
in Hassan et al.  [10], a balance is achieved between the previously discussed data challenges,  available 
data, and desired characteristics to identify the appropriate dataset for the study.  Unlike most 
publications applying transfer learning, Biswas et al. [11] propose a classification approach built around 
prototype-based learning called eXplainable Deep Learning (xDNN). On the other hand, Sonali et al. 
[12] present an optimized convolutional neural network model named ADECO-CNN that achieved the 
highest results. However, possible data leakage exists using splitting at random. The most extended 
protocol with three setups, three scenarios, a mix of them, and one of two applied external validation is 
Silva et al. [13]. Silva et al.  [13] detailed a real cross-dataset analysis, whereas Sonali et al.  [12] provide 
less information about external validation. Furthermore, in [13] a discussed series of data challenges are 
overcome using appropriate pre-processing and two splitting scenarios besides the random one: the 
“slice” scenario and the voting-based approach. The proposed models are entirely built on the B0 and 
modified (smaller, deeper) architectures of the EffiecientNet family. 

 In contrast, Biswas et al. [11] proposes applying an ensemble approach that stacks three base models 
to achieve promising results. Moreover, a gradient-weighted class activation mapping (Grad- CaMS [14]) 
is utilized. In Biswas et al. [11] additional experiments merged the dataset with other public data 
changing the binary classification (COVID-19/non-COVID-19 but with other pulmonary diseases) to a 
3-class (+ Healthy) task. Still, the validation is internal. The [15] study takes an approach to investigate 
histogram equalization techniques’ impact on the transfer learning models’ performance. Therefore, the 
first step obtains the original dataset and two additional copies, then applies Histogram Equalization 
(HE) [16] to one copy and Contrast Limited Adaptive Histogram Equalization (CLAHE) [12] to the 
other, resulting in three datasets. The results show that the VGG-19 combined with a dataset using 
CLAHE achieved the best overall performance, but the highest specificity performed MobileNet-V2 
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architecture with a dataset using HE. The experiment results do not give conclusive proof or a definitive 
answer on whether or not histogram equalization techniques have any significant impact on the overall 
models’ performance. However, with one exception ([13]), other protocols suffer from at least one or 
more data challenges. Furthermore, half of the protocols have no or insufficient information about data 
pre-processing (Table 1). 

Table 1.  Overcome Techniques in Protocols 

Data Challenge 

Overcome technique in classification protocol 

[17] [11] [18] [19] [13] [15] 

Image size and 
contrast  

No 
information 

No 
information 

No 
information 

Standardization 
Normalization 
Converting the 
RGB to YUV 
and YUV back 

to RGB  

Standardization 
Normalization 

Standard 
Histogram 

Equalization 
(HE) 

Contrast Limited 
Adaptive HE 

(CLAHE) 

Scans organization 
by patients 

x x x x Voting-based 
approach 

x 

Data splitting 
Training/validation 

/testing 

x random) 
80/20 

x (random) 
80/20 

x (random) 
 

68/17/15 

 x (random) 
70/30 

Random/ 
Slice/Voting 

x (random) 
 

60/20/20 

Volume x  TL  aug + TL aug TL  aug + TL 

 This paper reveals the potential for synergetic application of techniques and methods in deep learning 
to detect COVID-19 pneumonia in chest computed tomography (CT) images. First, the research briefly 
analyzes recent scientific publications and systematic reviews utilizing the public SARS-CoV-2 dataset 
to identify the main challenges, gaps, and recommendations. Second, it proposed a strategy addressing 
the found challenges. Third, it reveals the experimental setup of applying the strategy by combining 
different techniques with an ensemble method to mitigate bias risks. Finally, the suggested solution is 
compared with the related protocols. 

2. Method 

2.1 Dataset 

This section points out how far the challenges have been overcome basis on data attributes. The 
SARS-CoV-2 CT is a publicly available dataset [17] of 2482 CT images retrieved from hospital settings 
(Public Hospital of the Government Employees and  Metropolitan Hospital of Lapa, Sao Paulo, Brazil) 
from 120 adults with a balanced distribution by infected/non-infected patients and by gender (Table 2). 

 Some general challenges are overcome by choosing the SARS-CoV-2 dataset, but another arises. 
Although the images are primarily centered, the scans are not in the original DICOM format suitable 
for exploring scanner and slice thickness parameters. The pre-processing includes techniques such as 
standardization and normalization as CT images have different contrast (intensities and grayscales). Data 
are organized into COVID-19 and non-COVID-19 directories (Fig. 1), but neither has organization by 
patients. Beneficial, the distribution is known due to the dataset description provided by Biswas et al. 
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[11], such an issue shows a high risk of bias through so-called data leakage. Because several scans present 
one patient and the patients and their images are not grouped, the data from the same individual can 
occur in both the training and test sets simultaneously. It may produce misleading outcomes 
(overestimated results), especially splitting at random. A k-means-based patient clustering method can 
be helpful [14].  

Table 2.  Data Characteristics 

Characteristic Description 

Access  
(availability) 

Publicly available at https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-

Scan and https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset 
Volume With a limited sample size but relatively large in terms of [8], defined as a large dataset 

with supplemental AI-based models  
Quality  Contrasted, focused images (centered) 

No missing data 
No significant artifacts 
No duplicated items 

Format PNG 
Veracity Hospital databases,  

Real patients, infected patients confirmed by PCR - test confirmation 
Used and presented in scientific papers [11], [17], [20] and reviews [9], [10] 

Distribution Balanced in # of scans by classes and by # of patients in total and per class 
Representativity 

(demographic & target 
group) 

Only Adults (>18), Balanced by gender (male-female) in both classes, 
Balance by SARS-CoV-2 virus-infected patients and non-infected ones with other 

pulmonary diseases  
Risk of bias High, further mitigated to low 

 

 

Fig. 1.  Data Distribution 

The narrower the literature review scope is, the more adaptive the protocol is, and the more risks of 
bias could be mitigated. The related publications [12], [13], [15]–[17] are beneficial in identifying more 
specific (data and task-related) challenges and improving the setup and precise results. However, not all 
of the papers found thus far consider the data gaps entirely. Table 3 summarizes the methods, measures, 
and highest achieved results in related work applying models on the SARS-CoV-2 CT-scan dataset, the 

https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-Scan
https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-Scan
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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same for the current study. The protocols applying just splitting at random may suffer from 
overestimated results. The conclusion is confirmed in Silva et al. [13]. 

Table 3.  Methods, Metrics, Validation and Results in papers utilizing the SARS-CoV-2 CT-scan dataset 

Ref Method(s) Metrics Validation Results (%) 

[17] Prototype-based deep learning 
eXplainable Deep Learning classification 

approach (xDNN) 

Precision  
Recall 

F Score  
Accuracy 

AUC 

Internal 99.16 
95.53 
97.31 
97.38 
97.36 

[11] TL 
Stacking ensemble (base models 
VGG-16, ResNet50, Xception) 

Data merge (binary to the 3-class task) 
Grad-CaMS 

Precision   
Recall 

F Score  
Accuracy 

AUC 

Internal 98.79 
98.79 
98.79 
98.79 
98.8 

[20] TL  
DenseNet201 (highest results),  

VGG16 
ResNet152V2 

Inception-ResNetV2 

Precision 
Recall 
F score 

Specificity 
Accuracy 

AUC 

Internal 96.29 
96.29 
96.29 
96.21 
96.25 

97 

[19] optimized CNN model (ADECO-CNN) 
TL 

VGG-19 & GoogleNet, ResNet 
compared with ADECO-CNN 

 

 
 

Accuracy 
Sensitivity 
Precision 
Specificity 

Internal 
External 

Depending on validation 
External to Internal 
98.2        to   99.99 
95.7        to   99.96 
97.9        to   99.92 
96.8        to   99.97 

[13] 

TL 
3 Architectures of EffiecientNet (Baseline 

B0, Smaller, Deeper)  
3 Setups  

(protocol proposed in Ref. [6] cross-
dataset evaluation, impact of input 

resolution) 
3 Scenarios (Random/ Slice/Voting) 

Accuracy (Acc) 
Sensitivity (Se) 

Positive 
Prediction (Pc) 

F score  
AUC 

Internal  
(5-fold cross-

validation) 
External 

(cross-dataset 
analysis) 

Depending on the mix of 
setups, scenarios & 

validation  
  External to Internal 
Acc 56.16 to 87.68 
Se   53.06 to 83.67 
Pc   54.74 to 93.98 

[15] 

HE, CLAHE (Histogram Equalization 
techniques) + TL 

1 original + 2 copied datasets:  
   1) original - no equalization,  

   2) copied +HE,  
   3) copied +CLAHE 

ResNet-101, VGG-19 + CLAHE (best 
overall performance),  

DenseNet201, EfficientNet-B4,  
MobileNet-V2 + HE (best specificity) 

 
 

Accuracy 
Precision 

Recall 
F score 

ROC-AUC 
Specificity 

Internal Depending on the HE 
techniques 

95.75 VGG-19 + CLAHE 
94.42 VGG-19 + CLAHE 
97.13 VGG-19 + CLAHE 
95.75 VGG-19 + CLAHE 
99.30 VGG-19 + CLAHE 

99.60  MobileNet-V2 + HE 
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2.2. The proposed model 

The presented analysis shows enough scope to improve the performance and mitigate the risks of 
bias. The proposed approach involves a strategy to address the challenges by applying all techniques and 
methods pointed out in Table 4. It contains data standardization and normalization to achieve proper 
contrast and size unification; k-means (Clustering) and group shuffle split to avoid data leakage; and 
augmentation and transfer learning to deal with limited sample size, over-fitting, and generalization 
errors before applying stacking ensemble learning. The pre-trained networks applied to build the base 
models are DenseNet201, VGG16, and InceptionV3. The first two demonstrate promising results in the 
discussed publications. InceptionV3 is not mentioned or experimented with so far over the SARS-CoV-
2 CT dataset.   

Table 4.  Data Challenges and Proposed Overcome Data Challenges Techniques 

Data Challenge Overcome in the applied protocol (Risk mitigation) 

Image size and contrast  Pre-processing strategy involves standardization and normalization 
Data organization Clustering approach (k-means) 

Data splitting Group shuffle split 
Volume Augmentation (Aug) + Transfer learning (TL) 

 

This section gives detailed information about the proposed approach, data pre-processing applied 
techniques, methods, and architecture. Fig. 2 illustrates the experimental workflow. 

 

Fig. 2. Workflow  

2.2.1 Data Pre-Processing 

The data identification, characteristics, distribution, and challenges are already presented. The clinical 
data is completely anonymized, following all international standards and best practices for data privacy. 
Fig. 3 shows the examples of images not pre-processed for both classes provided. 

 Some common image data issues can be noticed: non-standard size and non-standard contrast. The 
dimensions of the most miniature image are 104 × 153, while the most extensive images are 484× 416 in 
the SARS-CoV-2 CT dataset. The pre-processing stage consists of three steps before feeding the 
classification algorithm to the images, as follows: 

Step 1: The process of a simple pixel intensity rescaling the data to the range of 0-1 is defined as data 
normalization. That ensures the exact distribution of the input pixels, making the corresponding 
convolutional neural networks converge faster during the training phase. 
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Step 2: The input images have been converted into a fixed size (resized) to maintain compatibility with 
the preferred network architectures. The current project’s input image resolution suitable for the pre-
trained networks is 224x224.  

Step 3: Adding altered versions of the existing images is known as data augmentation. It is a technique 
to increase the diversity of training sets by applying transformations, such as image rotation and scaling, 
thus enlarging the data volume. The purpose is to expose the ML classifier to a wider variety of artificial 
images generated by rotating the CTs up to 20° and shifting the pixels in height and width (by 20 pixels, 
while the CTs have also been randomly flipped). That additional pre-processing step is assumed to reduce 
the overfitting. 

 

Fig. 3.  COVID-19 (1st row)  and non-COVID-19 CT Scans (2nd row) 

2.2.2. Clustering  

 Besides the presented points above, the current research uses one more preparation step. The 
processed data is balanced, representing 60 infected and 60 non-infected patients (Fig. 4). However, the 
patients and their images are not grouped. The same patient may appear in the training and validation 
sets simultaneously as one patient is presented by several scan slices. That may produce misleading 
outcomes, especially in splitting training and validation sets at random. 

 

Fig. 4.  Pre-processing to Clustering 
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 It can lead to an overestimated result due to data from the same patient/individual in both training 
and test sets (so-called data leakage). To reduce such cases, the study uses one of the unsupervised 
learning algorithms, k-means cluster analysis. The data images should be grouped into 120 clusters, the 
same as the number of patients in the dataset. Then the group shuffle split is applicable to ensure no 
images from the same group appear in both training and validation sets. As a result, the chance that one 
patient has slices in both sets is minimized. 

2.2.3. Transfer Learning 

Since training convolutional neural networks (CNNs) requires massive input data to avoid overfitting, 
and due to limited computational resources, the current study relies on transfer learning (Fig. 5). It is a 
common and effective strategy employed when there are insufficient data to train a comprehensive model 
from scratch. It entails applying features learned from one problem to another [21], [22]. The most 
common method of transfer learning is as follows: 

1) instantiate a base model with pre-trained weights 

2) freeze the base model 

3) build on top of the output of one (or several) layers from the base model 

4) new data can be used to train the model 

Different transfer learning approaches depend on the data and the problem. Therefore, modifications 
are possible. The appropriate workflow for the current issue has to dynamically modify the new model’s 
input data during training, which is required when data augmentation is applied. The last one is a data-
space solution to the problem of limited data [23].  

 

Fig. 5.  Transfer Learning 

 In the experimental session, the knowledge gained by training a series of different CNNs on a large 
dataset called ImageNet [24] is transferred to the domain of COVID-19. It should be stressed that 
dealing with pre-trained algorithms based on the ImageNet is suitable for recognizing items from daily 
life. Therefore, in the approach, unfreezing the final layers of selected algorithms makes it possible to 
learn some of the characteristics of the training dataset. The final performance of the picked pre-trained 
networks also depends on their architecture. The three convolutional neural networks, namely 
DenseNet-201 [25], InceptionV3 [26], and VGG-16 [27], were selected. The first two demonstrate 
promising results in the related work. InceptionV3 is not mentioned or experimented with so far over 
the SARS-CoV-2 CT-scan dataset.   
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2.2.4. Implementation and Meta-Parameters 

Before actual implementation (Python), it is essential to import all the relevant libraries: TensorFlow, 
Keras, Sklearn, Open CV, Matplotlib, Pandas, and NumPy. The main drivers are 
tensorflow.keras.applications and tensorflow.keras.layers to import pre-trained networks and layers 
involved in network construction. The ReduceLROnPlateau function reduces the learning rate when 
validation loss is not changing. The ImageDataGenerator method performs real-time augmentation 
while the model is still training.  

 A series of experiments are done with tunning the meta-parameters to avoid overfitting (Fig. 6). A 
dropout for regularization is applied before the classification layer. 

 

Fig. 6.  Meta-Parameters and Model’s Architecture 

2.2.5. Ensemble Learning 

The basic concept of ensemble learning is to train multiple base learners as ensemble members and 
combine their predictions into a single output that should have better performance on average than any 
other member with uncorrelated error on the target data sets [28]. Bagging, boosting, and stacking are 
transfer learning techniques commonly used for classification tasks [29], [30]. 

 

Fig. 7.  Stacked Ensemble Approach 

The current experimental session explores the stacking ensemble approach, also known as stacked 
generalization (Fig. 7). It ends with applying output probabilities for every class and weighted voting 
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based on summing each sample and algorithm. Stacking provides a good rank bias for intelligent systems 
[31]. The input of the meta-learner is a vector of base models’ predictions. Only the fully connected 
neural network (meta-learner) is trained again. The ensemble learning approach has two main 
advantages. The method can achieve better results than the base models. And it is another strategy for 
mitigating overfitting and decreasing the generalization error. 

3.  Results and Discussion 

The performance of the proposed models is tested through a validation dataset, covering 20% of the 
input scans or 24 patients from all available (internal validation). The base models and meta-learner are 
trained in 50 epochs. Only the meta-learner is trained during ensemble learning, freezing the base 
models.  

Various confusion-matrix-based and weighted evaluation metrics are considered for binary 
classification tasks, such as accuracy, precision, specificity, recall, and f-measure. Negative Prediction 
Value, False Positive Rate, False Negative Rate, and False Discovery Rate are evaluated. They are critical 
measurements, especially in the medical field, where the minimum number of false-negative and false-
positive outcomes is preferred to avoid human and social harm. The values of these metrics in the current 
approach are promising but can’t be compared with the related work as they are not presented. The 
numbers of COVID-19 and non-COVID-19 images correctly classified are referred to as true-positive 
(TP) and true-negative (TN). False-positive (FP) represents non-COVID-19 patients incorrectly 
recognized as COVID-19 (Table 5). False-negative (FN) represents COVID-19 patients that are 
incorrectly recognized as non-COVID-19. Few scans are misclassified (two false positive and one false 
negative). Thus, the model achieves high accuracy and is sensitive enough, but the most important is 
that critical metrics commented show a good ability to avoid misclassification. 

Table 5.  Evaluation metrics  

Metrics Calculation 

Sensitivity (Recall, True Positive Rate) TP/(TP+FN) 

Specificity (True Negative Rate) TN/(TN+FP) 

Precision (Positive Prediction Value) TP/(TP+FP) 

Negative Predictive Value TN/(TN+FN) 

False Positive Rate  FP/(FP+TN) 

False Negative Rate FN/(TP+FN) 

False Discovery Rate FP/(TP+FP) 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

F1-score 2*(Precision*Recall)/(Precision+Recall) 

 

All proposed learners achieve relatively high performance, with Inception v3 having exceptional values 
in all observed metrics from transfer learning-based models (Table 6). However, the stacked ensemble 
classifier is the most efficient.  
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Table 6.  Evaluation of classifiers 

 DenseNet 201 VGG-16 Inception v3 Ensemble 

Accuracy 94.83 97.20 99.13 99.35 
Precision weighted 94.83 97.20 98.71 99.35 

Recall weighted 94.83 97.20 98.71 99.35 
F1-score weighted 94.83 97.20 98.71 99.35 

AUC 95 98 1 1 
Specificity 93.75 96.88 98.66 99.11 

Negative Predictive Value 94.59 97.31 98.66 99.55 
False Positive Rate  6.25 3.13 1.34 0.89 
False Negative Rate 5 2.5 1.25 0.42 
False Discovery Rate 5.79 2.9 1.25 0.83 

 

In Fig. 8, the test curve stays slightly above train one, explained by the variance in train data added 
through real-time data augmentation and its absence in the test set. Dropout layers also could infer as 
they are “on” for training but “off” (skipped) when doing testing. In other worlds in training, due to 
disabling neurons, some of the information about each sample is lost, and the subsequent layers attempt 
to construct predictions based on incomplete representations. However, all of the units are available 
during validation, so the network has its full computational power - and thus, it might perform better 
than in training. The split rate is 0.2. The learning rate is not too high, so it is ignored as a reason. 
Nevertheless, the slight difference decreases with the increasing number of epochs. The ensemble 
classifier does not face such challenges. 

 

Fig. 8.  Model Accuracy & Model Loss 

 

Compared to the related work (Table 7), the data challenges are overcome, especially mitigating data 
leakage. The last issue is addressed only in Silva et al. [13], but the results presented are relatively low. 
All the other protocols suffer from such a problem. That can lead to overestimated results.  

Utilizing the proposed strategy may result in poorer performance of models than those presented in 
the related work. However, applying a transfer learning ensemble following clustering analysis and 
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augmentation achieves the second-highest results in COVID-19 classification on the SARS-COV2-CT 
dataset. 

Table 7.  Related and Current Work’s Model Performance Evaluation 

Ref # Data Challenge 
Internal Validation External Validation 

Accuracy Precision Recall F score AUC Accuracy Precision Recall F score AUC 

[17] PDLa 97.38 99.16 95.53 97.31 97.36      

[11] PDLa 98.79 98.79 98.79 98.79 98.8      

[20] PDLa 96.25 96.29 96.29 96.29 97      

[19] PDLa 99.99 99.92 99.96   98.2 97.9 95.7   

[13] DLMb 87.68   86.19 90.51 56.16     

[15] PDLa 95.75 94.42 97.13 95.75 99.3      

Proposed DLMb 99.35 99.35 99.35 99.35 1      

a Possible Data Leakage, b  Data Leakage Mitigation 

Unlike Silva et al. [13], which successfully addressed the data and protocol pitfalls, the current 
research proposed an ensemble approach to achieving higher performance.  

Lawton and Viriri [15] present a stacked ensemble using other base models than proposed, but the 
possible data leakage is not overcome. Furthermore, the proposed stacking achieves higher results. The 
reason for that is in applying Inception v3 as a base model. In related work, that pre-trained network is 
not utilized. However, the current experimental setup demonstrates higher accuracy than the other base 
models and the base models used in Lawton and Viriri [15]. Another significant difference is Densenet 
201 appliance. The last demonstrates promising results in related work, which is the reason to use it as 
a base model. The earlier paper extends the binary classification to a three-class classification, thus 
enlarging the discussed dataset. Therefore, we compare the results achieved on the binary task as a 
primary one in the present research. Lawton and Viriri [15] consolidate the new dataset and then present 
additional results on the new three-class classification. Sonali et al. [12] and Silva et al. [13] performed 
external validation, whereas the current validation is internal - one of the most common protocol 
challenges. 

4. Conclusions 

An analysis of related work utilizing the experimented dataset is provided, founding challenges 
summarized in three groups: general, data and protocol. A strategy addressing the data and protocol 
challenges is proposed: data standardization and normalization to achieve proper contrast and resolution 
unification; k-means (Clustering) and group shuffle split to avoid data leakage; augmentation and 
transfer learning to deal with limited sample size and over-fitting. The presented model design with 
stacked ensemble learning decreases the generalization error and combines the ensemble members’ 
predictions into a single output outperforming any other member on average. The proposed ensemble 
transfer learning classifier follows augmentation and cluster analysis, thus making the model more robust 
and able to handle data pitfalls. Although the results are promising, internal validation is the most 
significant protocol weakness. The lack of cross-data analysis and the limited amount of training data 
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are the main drawbacks that should be highlighted. An extended experimental session is set up, taking 
into account these considerations. Currently, the research focuses on retrieving more image data for 
training and external validation. The following study aims to compare the reported results and the new 
ones over the vast collection with external validation answering the question about the model’s ability 
for generalization.  
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